Sparse Regression Based Structure Learning of Stochastic Reaction Networks from Single Cell Snapshot Time Series

نویسندگان

  • Anna Klimovskaia
  • Stefan Ganscha
  • Manfred Claassen
چکیده

Stochastic chemical reaction networks constitute a model class to quantitatively describe dynamics and cell-to-cell variability in biological systems. The topology of these networks typically is only partially characterized due to experimental limitations. Current approaches for refining network topology are based on the explicit enumeration of alternative topologies and are therefore restricted to small problem instances with almost complete knowledge. We propose the reactionet lasso, a computational procedure that derives a stepwise sparse regression approach on the basis of the Chemical Master Equation, enabling large-scale structure learning for reaction networks by implicitly accounting for billions of topology variants. We have assessed the structure learning capabilities of the reactionet lasso on synthetic data for the complete TRAIL induced apoptosis signaling cascade comprising 70 reactions. We find that the reactionet lasso is able to efficiently recover the structure of these reaction systems, ab initio, with high sensitivity and specificity. With only < 1% false discoveries, the reactionet lasso is able to recover 45% of all true reactions ab initio among > 6000 possible reactions and over 102000 network topologies. In conjunction with information rich single cell technologies such as single cell RNA sequencing or mass cytometry, the reactionet lasso will enable large-scale structure learning, particularly in areas with partial network structure knowledge, such as cancer biology, and thereby enable the detection of pathological alterations of reaction networks. We provide software to allow for wide applicability of the reactionet lasso.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A special Class of Stochastic PERT Networks

Considering the network structure is one of the new approaches in studying stochastic PERT networks (SPN). In this paper, planar networks are studied as a special class of networks. Two structural reducible mechanisms titled arc contraction and deletion are developed to convert any planar network to a series-parallel network structure.&#10In series-parallel SPN, the completion time distribution...

متن کامل

A special Class of Stochastic PERT Networks

Considering the network structure is one of the new approaches in studying stochastic PERT networks (SPN). In this paper, planar networks are studied as a special class of networks. Two structural reducible mechanisms titled arc contraction and deletion are developed to convert any planar network to a series-parallel network structure. In series-parallel SPN, the completion time distribution f...

متن کامل

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

Classification of Sparse Time Series

Data sparsity is an emerging real-world problem observed in a various domains ranging from sensor networks to medical diagnosis. Consecutively, numerous machine learning methods were modeled to treat missing values. Nevertheless, sparsity, defined as missing segments, has not been thoroughly investigated in the context of time-series classification. We propose a novel principle for classifying ...

متن کامل

Classification of Sparse Time Series via Supervised Matrix Factorization

Data sparsity is an emerging real-world problem observed in a various domains ranging from sensor networks to medical diagnosis. Consecutively, numerous machine learning methods were modeled to treat missing values. Nevertheless, sparsity, defined as missing segments, has not been thoroughly investigated in the context of time-series classification. We propose a novel principle for classifying ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016